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The double-boundary-layer theory of Stuart (1963, 1966) and Riley (1965, 1967) 
is employed to investigate the mass transport velocity due to two-dimensional 
standing waves in a system comprising two homogeneous fluids of different 
densities and viscosities. The most important double-boundary-layer structure 
occurs in the neighbourhood of the oscillating interface, and the possible existence 
of jet-like motions is envisaged a t  nodal positions, owing to the nature of the 
mean flows in the layers. In  practice, the magnitude of the mass transport 
velocity can be a significant fraction of that of the primary, oscillatory velocity. 

1. Introduction 
Recently, Dore (1970, 1973) has considered the mass transport velocity due to 

surface and internal interfacial waves in a system comprising two layers of 
homogeneous fluid of different densities p and kinematic viscosities Y. Such 
velocity is in the Lagrangian sense, and is averaged over a complete period 
2771~7 of the motion. The calculations followed the earlier theory for surface waves 
of Longuet-Higgins ( 1953) who considered the oscillatory laminar boundary 
layers, of thickness O ( [ Y / C T ] ~ ) ,  adjacent to the bottom and the oscillating free 
surface. Whereas the vorticity due to the primary, oscillatory motion is confined 
to these layers, the extent to which the mean vorticity field penetrates the 
remainder of the fluid depends, inter alia, on the parameters 

a: = ak, e-l = (g/vk2)*, kh. 

These represent, respectively, the maximum wave slope (assumed < l) ,  the 
square root of a characteristic wave Reynolds number (assumed B 1) and the 
ratio of fluid depth h to wavelength Znlk, for a wave of amplitude a. 

The validity of the above-mentioned work requires the waves to be of suffi- 
ciently small amplitude. In  fact, when a B en, where n > 0 depends on the 
particular wave under consideration, convection of mean vorticity (neglected 
in the above calculations) is very important. Indeed, beyond the oscillatory 
layers, Longuet-Higgins (1953) attempted to calculate the mass transport 
velocity for these large amplitude surface waves by means of a theory of inviscid 
rotational flow, in which only the convection term is retained in the equation 
governing the mean motion. Reasons why the attempt was unsuccessful have 
been indicated by Stuart (1963, 1966) and Riley (1965, 1967), who studied mean 
motions in boundary layers adjacent to solid bodies oscillating in unbounded 
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fluid which is otherwise at rest. They demonstrated that, for sufficiently large 
amplitudes, the mean vorticity is mostly confined within a second (outer) 
boundary layer which is thicker than the oscillatory layers, and that convection 
and viscous diffusion of mean vorticity are in balance throughout this outer 
layer. 

The double-boundary-layer theory of Stuart and Riley has been employed by 
Dore (1976) in a consideration of mean motion due to standing surface waves in 
homogeneous fluid of finite uniform depth. When a: 9 E ,  the horizontal component 
of the mass transport velocity, which is O(a2) ,  decays to zero through an outer 
bottom boundary layer of thickness O(e/a). Moreover, near the bottom, upward 
vertical ‘jet-like’ motions are predicted beneath anti-nodal positions, where the 
mean flows in the outer boundary layer in two adjacent cells, of width one-quarter 
of a wavelength, collide. In  the absence of any interaction between the induced 
mean flows near the bottom and free-surface boundary layers, it is shown that 
no outer boundary layer adjacent to the free surface (assumed clean) is required. 
The region near the free surface was not considered by Mei, Liu & Carter (1972), 
who had, however, previously deduced the jet-like structure near the bottom. 

In the present work, it is intended to make use of the double-boundary-layer 
theory of Stuart and Riley in the case of standing internal waves on the interface 
between two immiscible homogeneous fluids of infinite, or possibly finite, depth. 
Although it is possible to give a formal development of the required theory in 
terms of asymptotic expansions and limit processes, as systematically illustrated 
in the work of Riley (1967), we shall mostly be content to extract and investigate 
the relevant equation in outer boundary layers. When a% 9 e,  i t  is found that 
the mean tangential velocity is O(a4) near the interface, and that decay to zero 
takes place through outer interfacial boundary layers of thickness O( ~/a*) .  In  
practice, such velocities can be a significant fraction of the primary, oscillatory 
velocity. Near the interface, ‘jet-like’ motions are predicted in the neighbour- 
hood of nodal positions, and arise because of the collision of mean flows, in both 
outer and inner interfacial boundary layers, in adjacent cells of width one- 
quarter of a wavelength. In  the time-averaged picture, the interface is horizontal 
and the axes of the jets are vertical. The momentum flux in each outer boundary 
layer is obtained analytically a t  any position along the interface, and the ratio 
of the fluxes is equal to the ratio of the corresponding quantities (pp),, where p 
and p denote the density and viscosity of zl fluid, respectively. 

2. Summary of existing results 
We consider the case of two-dimensional motion associated with a standing 

wave on the interface between two homogeneous, immiscible, incompressible 
fluids. The origin of Cartesian co-ordinates is taken at the equilibrium level of 
the interface, and the density p(l) of the lower fluid is assumed to be greater than 
that, p@), of the upper fluid. The lower fluid is assumed either to have infmite 
depth or to be bounded below by the fixed horizontal plane z = - The upper 
fluid may either have infinite depth, be bounded by the fixed plane z = or 
possess a free upper surface. If, in the latter case, ‘I = (ptl)-p@))/p@) < 1, interest 
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is largely confined to the internal mode; for larger values of 7, each of the two 
possible modes is of interest. The standing wave to be considered has period 
27r/o and wavelength 2nlk. A stream function $ is defined such that the velocity 
vector q = (u, zu) = (a$/az, - a$/ax), and the variables are non-dimensionalized 
according to the scheme 

P = kr, t" = ot, $ = k2$/a, 8 = (vk2/o)*, 

where v denotes the kinematic viscosity. Then, omitting the carets, w = V2$ 
represents the fluid vorticity and the interfacial displacement is 

zi = acosxeit+O(a2) (a < 1). (2.1) 

Boundary-layer theory is assumed to be applicable in each fluid, so that we 
necessarily require that 

where superscripts (1) and ( 2 )  denote quantities associated with the lower and 
upper fluid, respectively. In  order to investigate the interfacial boundary layers, 
we shall make use of the orthogonal curvilinear co-ordinate system described 
by Longuet-Higgins (1953). Thus s denotes arc length measured along the 
interface and n is measured positive along a normal into the upper fluid; ~ ( s ,  t )  
denotes the curvature of the interface and is positive when the centre of curvature 
lies in the upper fluid. The quantities s, n and K are used below, following their 
non-dimensionalization according to the above-mentioned scheme. 

Within the oscillatory boundary layers of thickness O ( g )  adjacent to the 
interface, which is assumed to be uncontaminated, we write 

&)<min(I,W)) ( r =  I ,2 ) ,  ( 2 . 2 )  

N = n]2&, $ = a$(l)(s, N ,  t )  + a2$((g + . . . . (2.3) 

Although cannot be determined 
without consideration of the mean flow outside these layers. Regarding the 
mean motion within the layers, Dore (1973)T has shown that 

is O(l ) ,  the order of magnitude of 

1 + i v) (p(l)p@)p(1)p(2))& aA* 
(2.4) 

[!h2)1 = O(l),' (2.5) 

"-- 
29i g (p(l)p(l')+ + (p '2 )p) t  * as ' 

where ,u is the viscosity of a fluid, a bar denotes an average over a wave period 
and A = [46(1J denotes the change in the tangential component of velocity across 
the whole region of the oscillatory interfacial boundary layers. That is, A re- 
presents the strength of the interfacial vortex sheet according to linear, inviscid 
theory. These results form boundary conditions on the mean motion outside the 
oscillatory layers, and were obtained by integrating the mean equation of motion 
across the layers and satisfying the interfacial conditions of continuity of 

t In relation to this work, it may be noted that the right-hand side of equation (624)  
of the appendix should be multiplied by a factor 2-*; equation (3.10) of the work is, 
however, accurate. 



822 B. D .  Dore 

tangential velocity and tangential stress. (It is noted that the right-hand side of 
(2.4) vanishes when p(2) = 0 or when p(l) = pc2).) It was found by Dore (1973) that 
the order of magnitude of the mean vorticity both within and a t  the edges of the 
oscillatory layers is at least 01~e-1. In fact, we assume that Tj , ,  is O(s-l) throughout 
these layers. The order of'magnitude of the mean tangential velocity within the 
layers is then at least a2, but if it  is greater than this, the main contribution to the 
mean tangential velocity must be constant across any section s = constant 
through the layers. 

a%, 
t was shown by Dore (1973) that the mean motion outside the oscillatory 
layers? is governed by the biharmonic equation for T'",,(x,z) and that mean 
vorticity O(a2e-l) diffuses into the interior of each fluid. This results in a mean 
circulation of velocity O(a2e-l) in cells of width one-quarter of a wavelength. 
Correspondingly, the leading term in the function $$ associated with the 
oscillatory interfacial layers is of the form p(20) = C(s)N,  where C(s) is O ( l ) ,  so 
that the mean tangential velocity within these layers is O ( O ~ ~ E - ~ ) ,  and is constant 
across them, in accordance with remarks made in the previous paragraph. We 
now investigate the mean motion for standing interfacial waves of sufficiently 
large amplitude that a* $ E ,  and make some use of the theory of Stuart (1963, 
1966) and Riley (1965, 1967). 

For standing interfacial waves of sufficiently small amplitude that 1 $ e 

3. Double boundary layers for the case e < aQ < 1 

In  discussing mean motions associated with interfacial waves, the interfacial 
boundary layers are of prime importance and, as mentioned in $2,  the mean 
vorticity, which is O(a2c1) ,  does not decay to zero at the edges of the oscillatory 
layers. We therefore consider the possibility of the existence of outer interfacial 
boundary layers, through which such vorticity, together with the associated 
mean tangential velocity from which i t  is derived, may decay to zero. Because 
of the fluctuating position of the interface and inner interfacial layers, and 
because of the rapid variations expected within the outer layers, it is necessary 
to use a system of curvilinear co-ordinates in which the interface coincides with 
a co-ordinate surface. The system which we adopt is that of Longuet-Higgins 
(19531, referred to in 3 2. In  terms of these co-ordinates (8, n), it is readily shown 
(see appendix) that the dominant contribution to the mean vorticity satisfies 
the nonlinear partial differential equation 

where 

t In  the interior of the fluid, $ = aY, + a2Y2 + . . . 
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denote the components of mass transport velocity along and perpendicular to the 
interface, respectively, and s' and n' represent the rates at which the co-ordinates 
of a particular fluid element are increasing. For a single standing wave, the 
integrals in (3.2) yield no O(1) contributions, so that we expect that G(9 satisfies 

Also, within the outer layers, where mean inertia and viscous forces are com- 
parable, we expect that G(2) is O(e-l) and that the mean tangential quantity 
3i2) FZ aT(,/an must be 0(6+), where &is a measure of the thickness of the outer 
interfacial boundary layers. (In fact, the possibility that 3i2) can be greater than 
0(6s- l ) ,  and hence constant across a section s = constant, can be shown to be 
untenable.) Thus, from consideration of orders of magnitude in (3.3), we obtain 

6 = €/a# < 1, 

T(2) = (6/af) Q(S, N )  + . . . 
and define 

N = n/S, 

within the outer layers. Consequently, regarding the mass transport velocity 
outside the oscillatory layers, i t  is the parameter which is the analogue of 
the conventional Reynolds number. The mean tangential velocity in the outer 
layers is O(a*), which, although surprisingly large, remains (formally) much less 
than the oscillatory velocity, O(a), of the primary motion. The expansion of 
@(a(s, N )  in (2.3) begins with a term of the form SC(s)N, the corresponding mean 
tangential velocity, O(a*), being constant across the inner interfacial boundary 
layers. 

On using (3 .3)-(34,  together with the assumption that the mean tangential 
velocity, O(a*), decays to zero a t  the edges of the outer interfacial boundary 
layers, we obtain an equation of the form 

- 

in each of the outer interfacial layers. Thus the main contribution to the mean 
motion in these layers is governed by an equation of the same structure as that 
found by Dore (1976) to describe the mean flow in the outer bottom boundary 
layer beneath a standing surface wave. The boundary conditions to be satisfied 
by Q are determined with the aid of (2.4) and (2.5), the kinematical condition at 
the interface and principles of asymptotic matching: 

and 
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at the edges of the respective outer boundary layers. It is important to note that 
K > 0 for each motion in the form of a single standing wave. Specifically, 

K = i(cothh(1)+cothh(2))2 

when the uppermost surface of the system is the plane z = 

K = +[(coth h(l) + coth - (p/a) cosech U2)I2 

when the uppermost surface is free and has amplitude /3. In  the latter case, the 
formula for K holds irrespective of which of the two possible modes of oscillation 
forms the standing wave. Physically, (3.7) and (3.10) imply that there is a (net) 
mean tangential stress O(a2e) acting on the fluidwithin the outer boundary layers. 
This stress is exerted in the positive (negative) s direction between s = rn 
(s  = rn - in) and s = rn + +n (s = rn + n), r = 0, & 1, a 2, . . . . Consequently, it 
may be expected that the mean flows in the outer boundary layers converge in 
the regions of the nodes. Therefore, to the above conditions on @, we add the 
requirement that 

a@/aN = o (8 = m). (3.11) 

When (3.6) is integrated across the whole of each outer boundary layer and use 
is made of the conditions (3.7), (3.9) and (3.10), we find the following analytical 
relation for the total momentum flux: 

where 

However, the above boundary-value problem for @ may, with some advantage, 
be transformed as follows. We write 

@(')(S, N(')) = yp(s ,  yd1)) ,  @(2)(s, = - yp(S, - YN(2) ) ,  (3.12) 

where (3.13) 

Then the function F ( s , N ) ,  defined for -ca < N < 0, is the solution of the 
boundary-value problem 

a~ a2F aaav av -----=- 
aN a s a N  as aN2 aN3 ' 

P =  0 ( N  = O ) ,  

a2F/aN2  = sin28 ( N  = o), 
a F / a N  -+ 0 ( N  3 - a), 
a q a N  = o (8 = m). 

With reference to the functions @(l)(s, ~ ( 1 ) )  and @@)(s, "2)) associated with the 
outer interfacial boundary layers, the value of the above transformation is 
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apparent. These functions, which satisfy the same partial differential equation 
and which are linked by the ‘interfacial’ boundary conditions (3.7) and (3 .8) ,  
may, for any values of p@), ,u@) and h(r) and whether the uppermost surface is free 
or not, be inferred directly from the solution of the boundary-value problem for 
F(s,  N ) .  I n  particular, velocity profiles a2t$,, w a* %D/8iv a t  any section s = con- 
stant in the respective outer boundary layers have a similar form. Further, 

(3.14) 

so that M ( ~ ) ( s )  = &@)p(r)y3 sin28 (3.15) 

may be determined simply and exactly, and shows that the ratio of the momentum 
fluxes in the outer layers is equal to the ratio of the corresponding quantities 
(pp)&. Each such flux increases monotonically from anti-nodal to nodal positions, 
and reaches a (theoretical) maximum at nodal locations s = ( r+$)n- .  The 
‘terminal ’ momentum flux arriving at any node is given by 

2 M ( r ) ( y n  + +;lr) = 2a%6(r)p(r)y3 (3.16) 

in each outer boundary layer. 
With reference to the boundary-value problem for F(s ,  N ) ,  we shall be content 

here to develop an approximate solution in the neighbourhood of anti-nodes 
s = rn-. Thus we adapt the procedure of Riley (1965) and seek a solution in terms 
of a series expansion, analogous to the Blasius series, about the anti-nodal 
stagnation points of the mean flow in the outer interfacial boundary layers. We 
write 

B = s-WT, sin% = c ~ ~ + c ~ c , k + c ~ c , 8 5 +  ..., 
P(B, N )  = C1 gfl($) + C? gy3(k) + . . . , 

where 2 = c1 N (cl > 0) ,  and obtain 

Thus, for 1.51 < 1 ,  profiles of the mean tangentia lvelocity a c d q / a ~  are approxi- 
mately exponential. Within the inner oscillatory boundary layers, the main 
contribution to the mean tangential velocity is O(a*), and is constant across any 
section s = constant, as mentioned above. I n  fact, we have 

Q, M 3& M a%(a@/aN) , ,  = a*c1y2[c, Sf ; (O)  + C, P f ; ( O )  + . . .] 
within these layers. By consideration of (3.6) and the requirement that the mean 
tangential velocity, O(a%), should tend to zero a t  the edges of the outer layers, it 
is readily shown that the mean normal velocity Q, w Ti;, which is O(a*6), must 
be negative (positive) a t  the edge of the outer interfacial boundary layer in the 
upper (lower) fluid. 
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4. Description of the mean flow 
Features of the mean Lagrangian flow pattern within the interfacial boundary 

layers are as follows. Fluid elements in any particular cell, of width one-quarter 
of a wavelength, move steadily, in both inner and outer layers, in the direction 
from anti-nodes to nodes; conservation of mass is maintained, since fluid a t  the 
edges of the outer layers moves normally inwards. The mean flows in the layers 
collide in the neighbourhood of nodal positions. It can then be argued, as for the 
outer bottom boundary layer beneath a standing surface wave (considered by 
Dore 1976), that the present results may indicate the occurrence of a sequence 
of ‘jet-like’ motions occurring in the neighbourhood of nodal positions, the 
strength of the ‘jets’ being represented by (3.16). Thus it is of interest to compare 
the steady velocities in the outer layer beneath a standing surface wave with 
those [O(a*)] in the interfacial layers. If, as a particular example, we take 
7 = 10-3 and have the same wavelength in the two cases, the (dimensional) steady 
velocities are comparable over the whole range of surface/interfacial slopes and, 
correspondingly, the ratio of surface to interfacial wave amplitudes is O(1). 
Therefore it would seem that use of the terminology ‘jet’ can be equally justified 
in the present context for sufficiently large a. Accordingly, in the time-averaged 
picture of the flow, wherein the interface is horizontal, thin jets emerge from 
nodal positions and have axes directed vertically upwards (downwards) in the 
upper (lower) fluid. 

If, in the solution of 3 3, the depth of each fluid is infinite, the double-boundary- 
layer theory requires that 

For fluids of finite depth, the corresponding condition is 

s = €/a* < 1. 

6 4 min (1, h) ,  

and there are two principal cases a $8. 

(a )  8 < a < a% < 1. For interfacial amplitudes satisfying this condition, an 
outer boundary layer of thickness O(+) is present near the rigid horizontal 
bottom. Within this layer, the structure of the mean motion is similar to that 
described for the outer boundary layer beneath a standing surface wave, and a 
horizontal mass transport velocity O(a2) decays to zero a t  the edge of the layer. 
A sequence of vertical jets is, in general, present near the bottom, beneath 
anti-nodal positions.? In  any particular cell of width one-quarter of a wave- 
length, the jets at the interface and near the bottom are suchas to tend to produce 
interior circulatory flow in the same sense. Of course, the strength of the inter- 
facial jets greatly exceeds that of the bottom jets, by a factor O(a-l). 

( b )  a < t‘ < a3 < 1. In  this case, the only double boundary layers present occur 
near the interface. The mean flow near the bottom, but outside the oscillatory 
layer, is dominated by diffusion of mean vorticity O(a2).  This would tend to 
produce mass transport velocities O(a2), which are, however, much smaller than 
those in the interfacial boundary layers and jets. 

7 But, in the important case when 7 -g 1, the vertical motion at anti-nodal positions is 
likely to be very weak, and the terminology ‘jet’ may not be appropriate. 
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For cases of finite depth, certain qualifying remarks must be made concerning 
each amplitude range (a )  and (b ) .  That an oscillating clean free surface does not 
give rise to a sequence of downward almost-vertical jets has been shown by Dore 
(1976). In the present context, this must be subject to the proviso that the jets 
emerging from the interface have no significant effect near the free surface. This 
condition should be satisfied if a*/€ is not too large and the waves are sufficiently 
short. The mean circulation pattern in the upper fluid should then be confined 
to the lower part of that fluid. Also, if one or both of the fluids is bounded by a 
rigid horizontal boundary, it is assumed that the effect of the interfacial jets 
near such a boundary is insignificant. 

The author is grateful to a referee for helpful comments which have led to an 
improved $4. 

Appendix 
Brief details a,re given of the derivation of the partial differential equation 

which governs the mean motion in outer boundary layers adjacent to an inter- 
face. Use is made of the orthogonal curvilinear co-ordinate system (8, n) described 
by Longuet-Higgins (1953). 

The vorticity equation for two-dimensional motion is 

VB-_[ 1 a ( - - )+ i (g&)]  l a  ( g =  I-nK), g 5 gas 
with a < 1. We write 

w = aw(l) + a2qg + . . . , (A 2) 

with similar expansions for s‘ and n’. Just outside the oscillatory layers, w , ~  = 0 
and G(s is expected to be O(e-l), but the order of magnitude of 3& is, a priori, 
neither known nor immediately inferable. At first, we assume that all derivatives 
are O( 1). Then the most important terms in (A I) yield 

aw(,/at = 0, o,, = q2). (A 3) 

From consideration of the next most important unsteady terms, and the fact 
that s‘ = O(a) and n‘ = O(ac) at the edges of the inner layers, we conclude that 

On taking the mean parts of the next most important terms, we find that the 
dominant contribution to the mean vorticity i3(, satisfies 

as discussed in $ 3. 
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